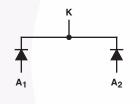


Data Sheet

November 2013

30 A, 200 V, Ultrafast Dual Diode

Description


The RURG3020CC is an ultrafast dual diode with low forward voltage drop. This device is intended for use as freewheeling and clamping diodes in a variety of switching power supplies and other power switching applications. It is specially suited for use in switching power supplies and industrial application.

Ordering Information

PART NUMBER	PACKAGE	BRAND	
RURG3020CC	TO-247	RURG3020C	

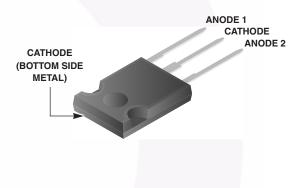
NOTE: When ordering, use the entire part number.

Symbol

Absolute Maximum Ratings (Per Leg) $T_C = 25^{\circ}C$

	RURG3020CC	UNIT
Peak Repetitive Reverse Voltage	200	V
Working Peak Reverse VoltageV _{RWM}	200	V
DC Blocking Voltage	200	V
Average Rectified Forward Current (Per Leg) I _{F(AV)}	30	А
$(T_{C} = 145^{\circ}C)$		
Repetitive Peak Surge CurrentIFRM	70	А
(Square Wave, 20 kHz)		
Nonrepetitive Peak Surge Current	325	А
(Halfwave, 1 Phase, 60 Hz)		
Maximum Power Dissipation	125	W
Avalanche Energy (See Figures 7 and 8)E _{AVL}	20	mJ
Operating and Storage Temperature	-65 to 175	°C

Features


- Ultrafast Recovery t_{rr} = 50 ns (@ I_F = 30 A)
- Max Forward Voltage, V_F = 1.0 V (@ T_C = 25°C)
- Reverse Voltage, V_{RRM} = 200 V
- Avalanche Energy Rated
- RoHS Compliant

Applications

- Switching Power Supplies
- Power Switching Circuits
- General Purpose

Packaging

JEDEC STYLE TO-247

SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
V _F	I _F = 30 A	-	-	1.0	V
	$I_{\rm F} = 30 \text{ A}, T_{\rm C} = 150^{\rm o}{\rm C}$	-	-	0.85	V
I _R	V _R = 200 V	-	-	250	μΑ
	V _R = 200 V, T _C = 150 ^o C	-	-	1	mA
t _{rr}	I _F = 1 A, dI _F /dt = 100 A/μs	-	-	45	ns
	I _F = 30 A, dI _F /dt = 100 A/μs	-	-	50	ns
t _a	I _F = 30 A, dI _F /dt = 100 A/μs	· ·	20	-	ns
t _b	I _F = 30 A, dI _F /dt = 100 A/μs	-	15	-	ns
R _{θJC}		-	-	1.2	°C/W

Electrical Specifications (Per Leg) T_C = 25°C, Unless Otherwise Specified

DEFINITIONS

 V_F = Instantaneous forward voltage (pw = 300 µs, D = 2%).

I_B = Instantaneous reverse current.

 T_{rr} = Reverse recovery time (See Figure 6), summation of $t_a + t_b$.

 t_a = Time to reach peak reverse current (See Figure 6).

t_b = Time from peak I_{RM} to projected zero crossing of I_{RM} based on a straight line from peak I_{RM} through 25% of I_{RM} (See Figure 6).

 $R_{\theta JC}$ = Thermal resistance junction to case.

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

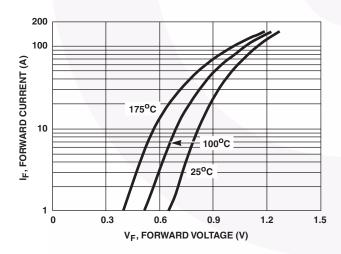


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

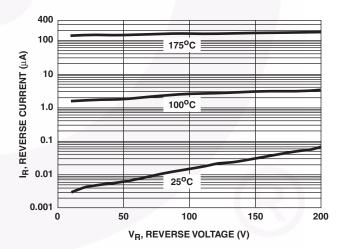
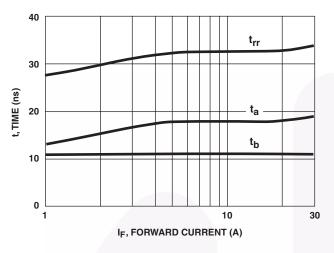



FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

Typical Performance Curves (Continued)

Test Circuits and Waveforms

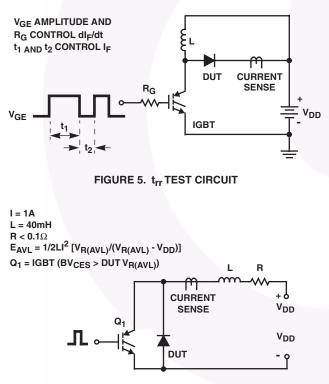
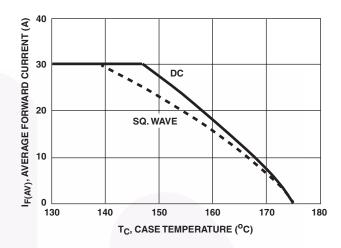
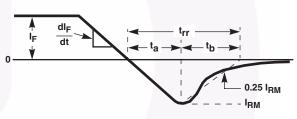




FIGURE 7. AVALANCHE ENERGY TEST CIRCUIT

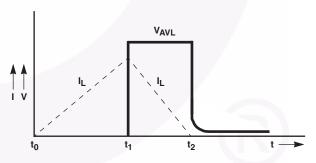
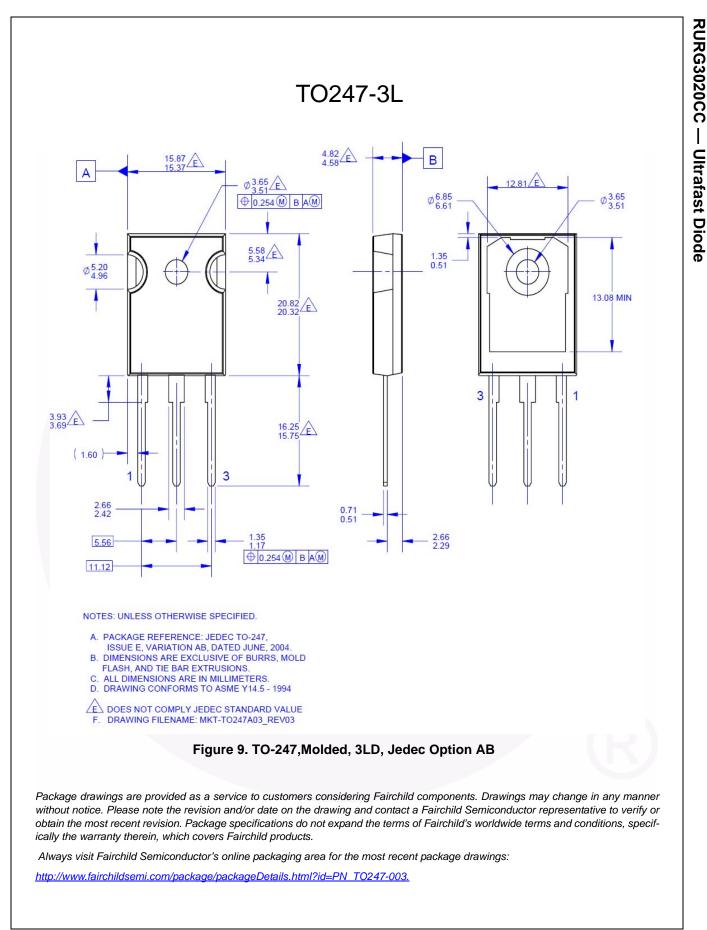



FIGURE 8. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

TRADEMARKS

A agu DawarTM

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™	F-PFS™		Sync-Lock™
AX-CAP [®] *	FRFET®		SYSTEM ®*
BitSiC™	Global Power Resource SM	PowerTrench [®]	GENERAL
Build it Now™	GreenBridge™	PowerXS™	TinyBoost [®]
CorePLUS™	Green FPS™	Programmable Active Droop™	TinyBuck [®]
CorePOWER™	Green FPS [™] e-Series [™]	QFET [®]	TinyCalc™
CROSSVOLT™	G <i>max</i> ™	QS™	TinyLogic [®]
CTL™	GTO™	Quiet Series [™]	TINYOPTO™
Current Transfer Logic™	IntelliMAX™	RapidConfigure™	TinvPower™
DEUXPEED®	ISOPLANAR™	ТМ	TinyPWM™
Dual Cool™_	Marking Small Speakers Sound Louder		TinyWire™
EcoSPARK [®]	and Better™	Saving our world, 1mW/W/kW at a time™	TranSiC™
EfficentMax™	MegaBuck™	SignalWise™	TriFault Detect™
ESBC™	MICROCOUPLER™	SmartMax™	TRUECURRENT®*
R	MicroFET™	SMART START™	µSerDes™
+ °	MicroPak™	Solutions for Your Success™	µSerDes ·····
Fairchild [®]	MicroPak2 [™]	SPM®	μ
Fairchild Semiconductor [®]	MillerDrive™	STEALTH™	/ SerDes"
FACT Quiet Series™	MotionMax™	SuperFET®	UHC®
FACT®	mWSaver®	SuperSOT™-3	Ultra FRFET™
FAST [®]	OptoHiT™	SuperSOT™-6	UniFET™
FastvCore™	OPTOLOGIC®	SuperSOT™-8	VCX™
FETBench™	OPTOPLANAR®	SupreMOS®	VisualMax™
FPS™		SyncFET™	VoltagePlus™
FF3'"		-,	XS™
*Trademarks of System Genera	I Corporation, used under license by Fairchi	Id Semiconductor.	
		ES WITHOUT FURTHER NOTICE TO ANY	
RELIADILITT, FUNCTION, OR	DESIGN. FAIRGHILD DUES NUT ASSUM	E ANT LIADILITT ARISING OUT OF THE	AFFLICATION OR USE OF ANY

PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Cupa LaskTM

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS **Definition of Terms**

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
1		Re