MDA970A1 thru MDA970A6

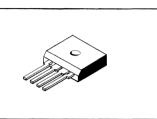
Designers Data Sheet

FULL-WAVE BRIDGE

4 AMPERES

50-600 VOLTS

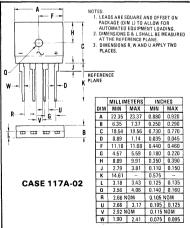
INTEGRAL DIODE ASSEMBLIES


... diffused silicon dice interconnected and transfer molded into rectifier circuit assemblies for use in application where high output current/size ratio is of prime importance. These devices feature:

- Void-free, Transfer-molded Encapsulation to Assure High Resistance to Schock, Vibration, and Temperature Extremes
- High Dielectric Strength
- Simple, Compact Structure for Trouble-free Performance
- High Surge Capability 100 Amps

Designers Data for "Worst Case" Conditions

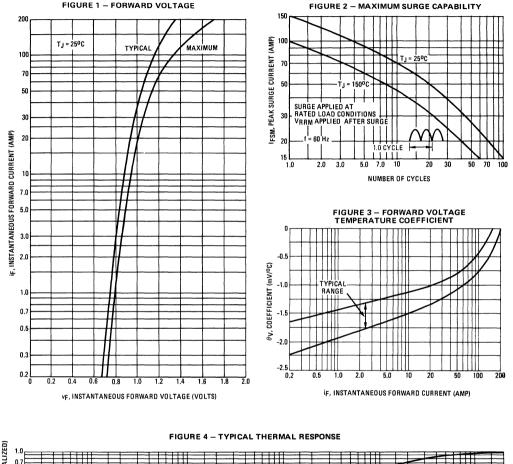
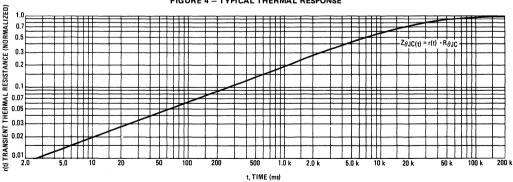
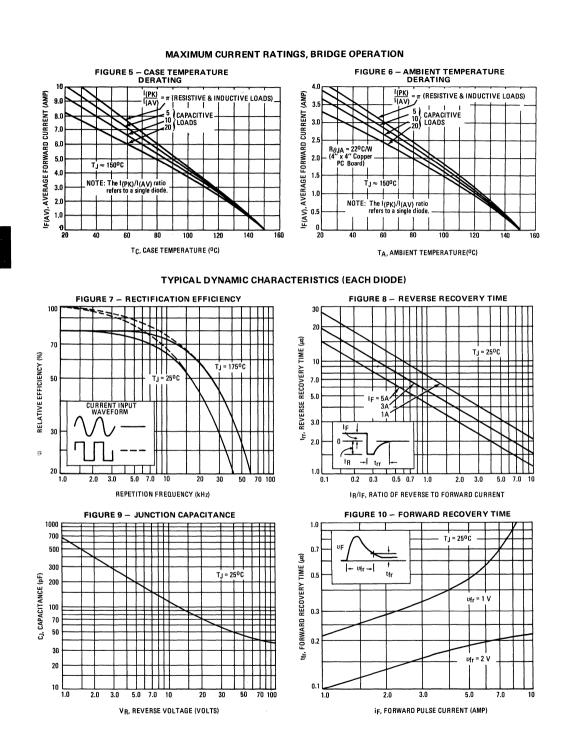
The Designers Data Sheet permits the design of most circuits entirely from the information presented. Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

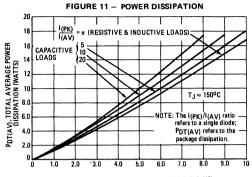

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	MDA970A1	MDA970A2	MDA970A3	MDA970A5	MDA970A6	Unit		
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	200	400	600	Volts		
RMS Reverse Voltage	VR(RMS)	35	70	140	280	420	Volts		
DC Output Voltage Resistive Load Capactive Load	Vdc Vdc	31 50	62 100	124 200	248 400	372 600	Volts		
Average Rectified Forward Current $T_A = 25^{\circ}C$ $T_C = 55^{\circ}C$	10	4.0							
Nonrepetitive Peak Surge Current (surge applied at rated load conditions, TJ = 150°C)	IFSM	100							
Operating and Storage Junction Temperature Range	Tj, T _{stg}			65 to +150 -			°C		

THERMAL CHARACTERISTICS

Characteristics			mbol	Max (Per D	ie) I	Unit
Thermal Resistance, Junction to Case	Each Die	F	BUC	10		C∕W
	Effective Bridg	e R ₆	(EFF)	7.75	0	C/W
ELECTRICAL CHARACTERISTIC	s			-		
Characteristic	Symbol	Min		Max	U	nit
Instaneous Forward Voltage (Per Diode) VF				V	dc
(i _F = 6.28 Amp, T _J = 25°C)				1.1		
(i _F = 6.28 Amp, T _J = 150°C)				1.0		
Reverse Current	I R			1.0	m	۱A
(Rated V _{RM} applied to ac terminals, + and – terminals open, $T_{\Delta} = 25^{\circ}$ C)						
CASE: Transfer-molded plastic encaps FINISH: All external surfaces are cor POLARITY: Embossed symbols			are ro	-	bidera	ble.


FIGURE 1 - FORWARD VOLTAGE

MDA970A1 thru MDA970A6

3

IF(AV), AVERAGE FORWARD CURRENT (AMP)

NOTE 1: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows:

(1)
$$\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3}$$

+ $R_{\theta 4} K_{\theta 4} P_{D4}$

Where ΔT_{J1} is the change in junction temperature of diode 1 R₀₁ thru 4 is the thermal resistance of diodes 1 through 4 P_{D1} thru 4 is the power dissipated in diodes 1 through 4 K₀₂ thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2) $R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$

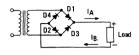
where: PDT is the total package power dissipation.

Assuming equal thermal resistance for each die, equation (1) simplifies to

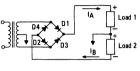
(3) $\Delta T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2} P_{D2} + K_{\theta 3} P_{D3} + K_{\theta 4} P_{D4})$

For the conditions where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} = 4 P_{D}$ equation (3) can be further simplified and by substituting into equation (2) results in

(4) $R_{\theta}(EFF) = R_{\theta} (1 + K_{\theta} + K_{\theta} + K_{\theta})/4$


For this rectifier assembly, thermal coupling between opposite diodes is 65% and between adjacent diodes is 72.5% when the case temperature is used as a reference. When the ambient temperature is used as the reference, the coupling is a function of the mounting conditions and is essentially the same for opposite and adjacent diodes.

The effective bridge thermal resistance, junction to ambient, is (from equation 4).


(5) $R_{\theta}(EFF)JA = R_{\theta}JA(1 + 3K_{\theta}(AV)JA)/4$

Where: $K_{\theta}(A \vee) JA \approx (K_{\theta}(A \vee) JC R_{\theta} JC + R_{\theta} CA)/R_{\theta} JA$ and $K_{\theta}(A \vee) JC$ is approximately 70%. $R_{\theta} CA$ is the case to ambient thermal resistance.

FIGURE 12 – BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

CIRCUIT A

CIRCUIT B

NOTE 2: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 12. The current derating data of Figures 5 and 6 apply to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A \neq I_B$, derating information can be calculated as follows:

(6) $T_R(MAX) = T_J(MAX) - \Delta T_{J1}$

Where ${\sf T}_{R(MAX)}$ is the reference temperature (either case or ambient)

△T_{J1} can be calculated using equation (3) in Note 1.

For example, to determine $\mathsf{T}_{C(\mathsf{MAX})}$ for the following load conditions:

IA = 3.1 A average with a peak of 11.2 A

IB = 1.55 A average with a peak of 6.8 A

First calculate the peak to average ratio for I_A . $I_{(PK)}/I_{(AV)} = 11.2/1.55 = 7.23$ (Note that the peak to average ratio is on a per diode basis.)

From Figure 11, for an average current of 3.1 A and an $I_{(PK)}/I_{(AV)} = 7.23$ read $P_{T(AV)} = 4.8$ watts or 1.2 watts/diode \therefore $P_{D1} = P_{D3} = 1.2$ watts.

Similarly, for a load current I_B of 1.55 A, diode #2 and diode #4 each see 0.775 A average resulting in an $I_{(PK)}/I_{(AV)} \approx 8.8$.

Thus, the package power dissipation for 1.55 A is 2.3 watts or 0.575 watts/diode \cdot PD2 = PD4 = 0.575 watts.

The maximum junction temperature occurs in diode #1 and #3. From equation (3) for diode #1 $\Delta T_{J1} = 9[1.2 + .65(.575) + .725(1.2) + .725(.575)]$

 ${}^{\scriptscriptstyle \bigtriangleup T}{}_{J1}\approx 26^o\text{C}$

Thus $T_{C(MAX)} = 150-26 = 124^{\circ}C$

The total package dissipation in this example is:

 $P_{j} = 2 \times 1.2 + 2 \times 0.575 \approx 3.6$ watts

(Note that although maximum $R_{\theta,JC}$ is 10° C/watt, 9° C/watt is used in this example and on the derating data as it is unlikely that all four die in a given package would be at the maximum value.)

NOTE 3

Under typical wire terminal or printed circuit board mounting conditions, the thermal resistance between the diode junctions and the leads at the edge of the case is a small fraction of the thermal resistance from junction to ambient. Consequently, the lead temperature is very close to the junction temperature. Therefore, it is recommended that the lead temperature be measured when the diodes are operating in prototype equipment, in order to determine if operation is within the diode temperature ratings. The lead having the highest thermal resistance to the ambient will yield readings closest to the junction temperature. By measuring temperature as outlined, variations of junction to ambient thermal resistance, caused by the amount of surface area of the terminals or printed circuit board and the degree of air convection, as well as proximity of other heat sources cease to be important design considerations.