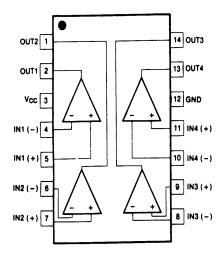
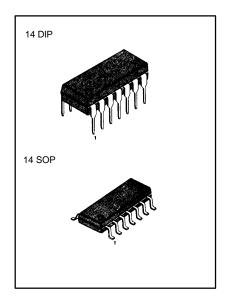
QUAD DIFFERENTIAL COMPARATOR

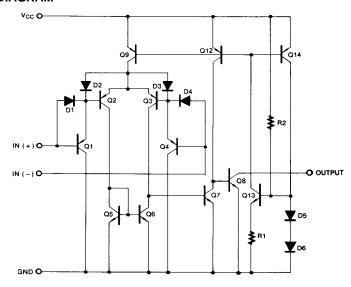
The LM239 series consists of four independent voltage comparators designed to operate from single power supply over a wide voltage range.


FEATURES


- Single or dual supply operation
- Wide range of supply voltage

LM239/A, LM339/A, LM2901: 2 ~ 36V (or ±1 ~ ±18V) LM3302: 2 ~ 28V (or ±1 ~ ±14V)

- Low supply current drain 800μA Typ
- · Open collector outputs for wired and connectors
- Low input bias current 25nA Typ
- Low Input offset current ±2.3nA Typ.
 Low input offset voltage ±1.4mV Typ.
- Common mode input voltage range includes ground.
- Low output saturation voltage
- Output compatible with TTL. DTL and MOS logic system



ORDERING INFORMATION

Device	Package	Operating Temperature				
LM339N	14 DIP					
LM339AN	14 DIP	_				
LM339M	14 SOP	0 ~ +70°C				
LM339AM	14 SUP					
LM239N	14 DIP					
LM239AN	14 DIP	-25 ~ + 85°C				
LM239M	14 SOP	-25 ~ + 85°C				
LM239AM	14 30F					
LM2901N	14 DIP					
LM2901M	14 SOP	-40 ~ + 85°C				
LM3302N	14 DIP	-40 ~ + 85°C				
LM3302M	14 SOP					

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit		
Supply Voltage	V _{cc}	±18 or 36	V		
Supply Voltage Only LM3302	V_{CC}	±14 or 28	V		
Differential Input Voltage	$V_{I(DIFF)}$	36	V		
Differential Input Voltage Only LM3302	V _{I(DIFF)}	28	V		
Input Voltage	V_{I}	- 0.3 to +36	V		
Input Voltage Only LM3302	V_{I}	- 0.3 to +28	V		
Output Short Circuit to GND		Continuous			
Power Dissipation	P_{D}	570	mW		
Operating Temperature LM339/LM339A		0 ~ + 70	°C		
LM239/LM239A	T_OPR	- 25 ~ + 85	°C		
LM2901/LM3302		- 40 ~ + 85	°C		
Storage Temperature	T _{STG}	- 65 ~ + 150	°C		

ELECTRICAL CHARACTERISTICS

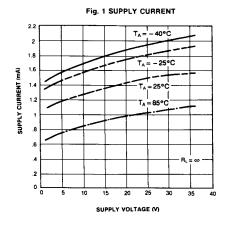
 $(V_{CC} = 5V, T_A = 25^{\circ}C, unless otherwise specified)$

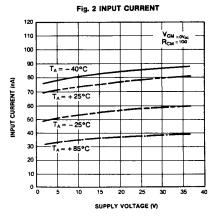
Ob and at a single	C	Test Conditions		LM239A/LM339A			LN	Unit		
Characteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Unit
		$V_{CM} = 0V$ to $V_{CC} = 1.5V$			±1	±2		±1.4	±5	.,
Input Offset Voltage	V _{IO}	$V_{O(P)} = 1.4V, R_S = 0\Omega$	NOTE 1			±4.0			±9.0	mV
					±2.3	±50		±2.3	±50	nA
Input Offset Current	I _{IO}		NOTE 1			±150			±150	ПА
Input Bias Current	I _{BIAS}				57	250		57	250	nA
mpat Blad Garrent	IBIAS		NOTE 1			400			400	
Input Common Mode	V _{I(R)}			0		V _{CC} -1.5	0		V _{CC} -1.5	V
Voltage Range	1(11)		NOTE 1	0		V _{CC} -2	0		V _{CC} -2	V
Supply Current	I _{CC}		R _L = ∞		1.1	2.0		1.1	2.0	mA
Voltage Gain	G∨	V _{CC} =15V, R _L ≥15KΩ(for large	ge swing)	50	200		50	200		V/mV
Large Signal	t _{RES}	V _I =TTL Logic Swing			350			350		ns
Response Time	'KES	$V_{REF} = 1.4V, V_{RL} = 5V, R_{L} = 5.$.1ΚΩ		000			000		
Response Time	t _{RES}	V_{RL} =5V, R_L =5.1K Ω			1.4			1.4		μs
Output Sink Current	I _{SINK}	$V_{I(-)} \ge 1V$, $V_{I(+)} = 0V$, $V_{O(P)} \le 1.5$	SV.	6	18		6	18		mA
Output Saturation	V _{SAT}	$V_{I(-)} \ge 1V, V_{I(+)} = 0V$			140	400		140	400	
Voltage	* SAT	I _{SINK} =4mA	NOTE 1			700			700	mV
Output Leakage	I _{O(LKG)}	$V_{I(-)} = 0V$	$V_{O(P)} = 5V$		0.1			0.1		nA
Current	·O(LKG)	$V_{I(+)} = 1V$	$V_{O(P)} = 30V$			1.0			1.0	μΑ
Differential Voltage	$V_{I(DIFF)}$		NOTE 1			36			36	V

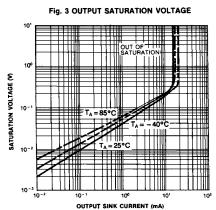
Note 1.

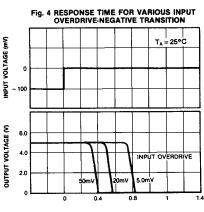
LM339/A: $0 \le T_A \le +70^{\circ}C$ LM239/A: $-25 \le T_A \le +85^{\circ}C$ LM2901/3302: $-40 \le T_A \le +85^{\circ}C$

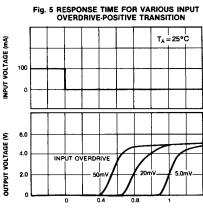
ELECTRICAL CHARACTERISTICS

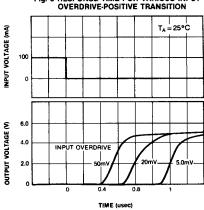

 $(V_{CC} = 5V, T_A = 25^{\circ}C, unless otherwise specified)$


Characteristic	Symbol	Test Conditions		LM2901			LM3302			Unit	
Citaracteristic	Symbol			Min	Тур	Max	Min	Тур	Max	Oilit	
	\/	$V_{CM} = 0V$ to $V_{CC} = 1.5V$			2	7		2	20	.,	
Input Offset Voltage	V _{IO}	$V_{O(P)} = 1.4V, R_S = 0\Omega$	NOTE 1		თ	15			40	mV	
Input Offset Current	I _{IO}				2.3	50		3	100	nA	
Input Onset Current	10		NOTE 1		50	200			300	шА	
Input Bias Current	I _{BIAS}				57	250		57	250	nA	
·			NOTE 1		200	500			1000	ш	
Input Common Mode	V _{I(R)}		-	0		V _{CC} -1.5	0		V _{CC} -1.5	V	
Voltage Range	V I(R)		NOTE 1	0		V _{CC} -2	0		V _{CC} -2	V	
Supply Current	Icc		R _L =∞		1.1	2.0		1.1	2.0	mA	
Cuppiy Cuitorii	.00		$R_L = \infty$, $V_{CC} = 30V$		1.6	2.5				ША	
Voltage Gain	G_V	V_{CC} =15V, $R_L \ge 15K\Omega$ (for I	arge swing)	25	100		2	30		V/mV	
Large Signal	t _{RES}	V _I =TTL Logic Swing	= 4140		350			350		ns	
Response Time		V _{REF} =1.4V, V _{RL} =5V, R _L :	=5.1KΩ					. .			
Response Time	t _{RES}	V_{RL} =5V, R_L =5.1K Ω			1.4			1.4		μs	
Output Sink Current	I _{SINK}	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V, \ V_{O(P)} \le 1$	1.5V	6	18		6	18		mA	
Output Saturation	V _{SAT}	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V$			140	400		140	400		
Voltage	V SAT	I _{SINK} =4mA	NOTE 1			700			700	mV	
Output Leakage	I _{O(LKG)}	$V_{I(-)} = 0V$	$V_{O(P)} = 5V$		0.1			0.1		nA	
Current	·O(LNG)	$V_{I(+)} = 1V$	$V_{O(P)} = 30V$			1.0			1.0	μΑ	
Differential Voltage	$V_{I(DIFF)}$		NOTE 1			36			36	V	


Note 1. LM339/A: $0 \le T_A \le +70^{\circ}C$ LM239/A: -25≤T_A≤ +85°C LM2901/3302: -40≤T_A≤ +85°C




TYPICAL PERFORMANCE CHARACTERISTICS



FAIRCHILD SEMICONDUCTOR TM

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEXTM ISOPLANARTM
CoolFETTM MICROWIRETM

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

FACT Quiet Series $^{\text{TM}}$ Quiet Series $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -3 SuperSOT $^{\text{TM}}$ -6 GTO $^{\text{TM}}$ SuperSOT $^{\text{TM}}$ -8 SuperSOT $^{\text{TM}}$ -8 TinyLogic $^{\text{TM}}$

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.