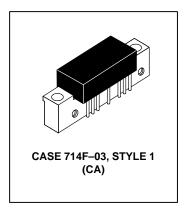
The RF Line Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push–pull circuit design.


- Specified Characteristics at V_{CC} = 24 V, T_C = 25°C:
 Frequency Range 5 to 200 MHz
 Output Power 800 mW Typ @ 1 dB Compression, f = 200 MHz
 Power Gain 34.5 dB Typ @ f = 100 MHz
 PEP 800 mW Typ @ -32 dB IMD
 Noise Figure 4.7 dB Typ @ f = 200 MHz
 ITO 46 dBm @ f = 200 MHz
- · All Gold Metallization for Improved Reliability
- Unconditional Stability Under All Load Conditions

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	Vcc	28	Vdc
RF Power Input	Pin	+5	dBm
Operating Case Temperature Range	TC	-20 to +100	°C
Storage Temperature Range	T _{stg}	-40 to +100	°C

CA2830C

34.5 dB 5-200 MHz 800 mWATT WIDEBAND LINEAR AMPLIFIERS

ELECTRICAL CHARACTERISTICS (T_C = 25°C, V_{CC} = 24 V, 50 Ω system unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency Range	BW	5	_	200	MHz
Gain Flatness (f = 5-200 MHz)	_	_	±0.5	±1	dB
Power Gain (f = 100 MHz)	PG	33.5	34.5	35.5	dB
Noise Figure, Broadband (f = 200 MHz)	NF	_	4.7	5.5	dB
Power Output — 1 dB Compression (f = 5–200 MHz)	Po 1dB	630	800	_	mW
Power Output — 1 dB Compression (f = 5–200 MHz, V _{CC} = 28 V)	Po 1dB	1000	1260	_	mW
Third Order Intercept (See Figure 10, f ₁ = 200 MHz)	ITO	44	46	_	dBm
Input/Output VSWR (f = 5-200 MHz)	VSWR	_	1.5:1	2:1	_
Second Harmonic Distortion (Tone at 100 mW, f _{2H} = 150 MHz)	d _{SO}	_	-60	-50	dB
Peak Envelope Power (Two Tone Distortion Test — See Figure 10) (f = 5-200 MHz @ -32 dB IMD)	PEP	600	800	_	mW
Supply Current	lcc	270	300	330	mA

TYPICAL CHARACTERISTICS

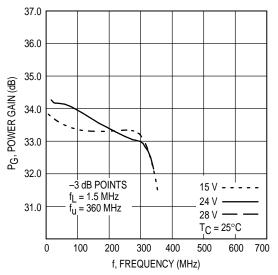


Figure 1. Power Gain versus Frequency

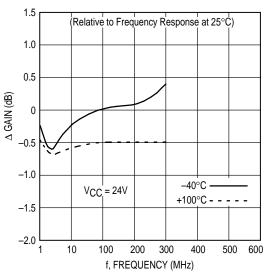


Figure 2. Relative Power Gain versus Temperature

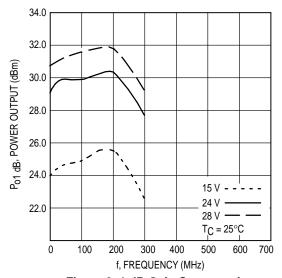


Figure 3. 1 dB Gain Compression versus Voltage

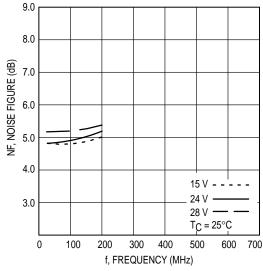


Figure 4. Noise Figure versus Voltage

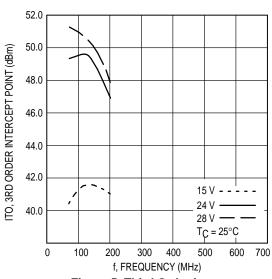


Figure 5. Third Order Intercept versus Voltage

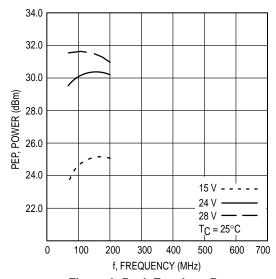
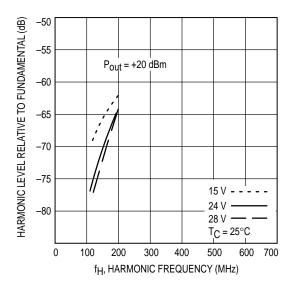



Figure 6. Peak Envelope Power versus Voltage

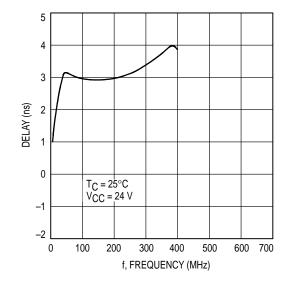


Figure 7. Second Harmonic Distortion versus Voltage

Figure 8. Group Delay versus Frequency

Biased at 24 Volts

Biased at 24 \	/olts						T = 25°C	$\mathbf{Zo} = 50\Omega$
Frequency	Frequency S11		S21		S12		S22	
(MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
5	-18.3	66.2	34.6	15.2	-47.0	17.7	-9.8	87.4
10	-19.3	45.5	34.6	-0.6	-47.0	2.3	-14.5	76.8
50	-15.6	35.0	34.2	-56.7	-47.5	-30.3	-12.6	45.0
100	-13.2	34.4	33.9	-114	-47.9	-62.9	-10.8	10.7
200	-11.1	30.1	33.5	134	-48.3	-128	-14.9	-42.6

Magnitude in dB, Phase Angle in degrees.

Table 1. S-Parameters

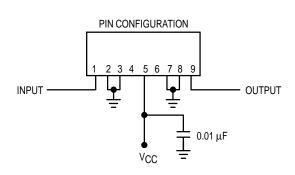


Figure 9. External Connections

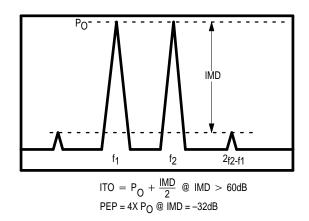
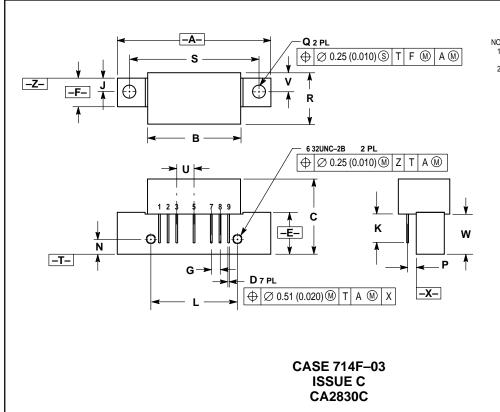



Figure 10. Intermodulation Test

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
- 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α		1.775		45.08	
В		1.085		27.56	
С		0.870		22.10	
D	0.018	0.022	0.46	0.56	
E	0.465	0.510	11.81	12.95	
F	0.300	0.325	7.62	8.25	
G	0.100 BSC		2.54 BSC		
J	0.156 BSC		3.96 BSC		
K	0.330	0.370	8.38	9.40	
L	1.000	BSC	25.40 BSC		
N	0.165 BSC		4.19 BSC		
Р	0.100	0.100 BSC		BSC	
Q	0.148	0.168	3.76	4.27	
R		0.595	_	15.11	
S	1.500 BSC		38.10 BSC		
U	0.200	BSC	5.08 BSC		
٧	0.209	0.239	5.31	6.07	
W	0.425		10.80		

STYLE 1:

PIN 1. RF INPUT 2. GROUND

3. GROUND

5. +V_{CC} 7. GROUND

8. GROUND 9. RF OUTPUT

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fee arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609

JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://motorola.com/sps **MOTOROLA**

CA2830C/D

Mfax is a trademark of Motorola, Inc.