High-Speed, Low-Power Dual Operational Amplifier

FEATURES
High Speed:
50 MHz Unity Gain Bandwidth
350 V/ $\mu \mathrm{s}$ Slew Rate
70 ns Settling Time to 0.01\%
Low Power:
7.5 mA Max Power Supply Current Per Amp

Easy to Use:
Drives Unlimited Capacitive Loads
50 mA Min Output Current Per Amplifier
Specified for $+5 \mathrm{~V}, \pm 5 \mathrm{~V}$ and $\pm 15 \mathrm{~V}$ Operation
2.0 V p-p Output Swing into a 150Ω Load
($\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}$)
Good Video Performance
Differential Gain \& Phase Error of $\mathbf{0 . 0 7 \%}$ \& 0.11°
Excellent DC Performance:
2.0 mV Max Input Offset Voltage

APPLICATIONS
Unity Gain ADC/DAC Buffer
Cable Drivers
8- and 10-Bit Data Acquisition Systems
Video Line Driver
Active Filters

PRODUCT DESCRIPTION

The AD826 is a dual, high speed voltage feedback op amp. It is ideal for use in applications which require unity gain stability and high output drive capability, such as buffering and cable driving. The 50 MHz bandwidth and $350 \mathrm{~V} / \mu \mathrm{s}$ slew rate make the AD826 useful in many high speed applications including: video, CATV, copiers, LCDs, image scanners and fax machines.

CONNECTION DIAGRAM
8-Lead Plastic Mini-DIP and SO Package

The AD826 features high output current drive capability of $50 \mathrm{~mA} \min$ per amp, and is able to drive unlimited capacitive loads. With a low power supply current of 15 mA max for both amplifiers, the AD826 is a true general purpose operational amplifier.
The AD826 is ideal for power sensitive applications such as video cameras and portable instrumentation. The AD826 can operate from a single +5 V supply, while still achieving 25 MHz of bandwidth. Furthermore the AD826 is fully specified from a single +5 V to $\pm 15 \mathrm{~V}$ power supplies.
The AD826 excels as an ADC/DAC buffer or active filter in data acquisition systems and achieves a settling time of 70 ns to 0.01%, with a low input offset voltage of 2 mV max. The AD826 is available in small 8-lead plastic mini-DIP and SO packages.

Driving a Large Capacitive Load

[^0] otherwise under any patent or patent rights of Analog Devices.
(@ $T_{A}=+25^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Conditions	$\mathbf{V}_{\mathbf{S}}$	Min	Typ	Max	Unit
OUTPUT CHARACTERISTICS Output Voltage Swing						
	$\mathrm{R}_{\text {LOAD }}=500 \Omega$	$\pm 5 \mathrm{~V}$	3.3	3.8		$\pm \mathrm{V}$
	$\mathrm{R}_{\text {LOAD }}=150 \Omega$	$\pm 5 \mathrm{~V}$	3.2	3.6		$\pm \mathrm{V}$
	$\mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega$	$\pm 15 \mathrm{~V}$	13.3	13.7		$\pm \mathrm{V}$
	$\mathrm{R}_{\text {LOAD }}=500 \Omega$	$\pm 15 \mathrm{~V}$	12.8	13.4		$\pm \mathrm{V}$
	$\mathrm{R}_{\text {LOAD }}=500 \Omega$	$0,+5 \mathrm{~V}$	+1.5,			
			+3.5			V
Output Current		$\pm 15 \mathrm{~V}$	50			mA
		$\pm 5 \mathrm{~V}$	50			mA
		0, +5 V	30			mA
Short-Circuit Current		$\pm 15 \mathrm{~V}$		90		mA
Output Resistance	Open Loop			8		Ω
MATCHING CHARACTERISTICS Dynamic						
Crosstalk	$\mathrm{f}=5 \mathrm{MHz}$	$\pm 15 \mathrm{~V}$		-80		dB
Gain Flatness Match	$\mathrm{G}=+1, \mathrm{f}=40 \mathrm{MHz}$	$\pm 15 \mathrm{~V}$		0.2		dB
Slew Rate Match	$\mathrm{G}=-1$	$\pm 15 \mathrm{~V}$		10		V/ $/ \mathrm{s}$
DC						
Input Offset Voltage Match	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.5	2	mV
Input Bias Current Match	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		0.06	0.8	$\mu \mathrm{A}$
Open-Loop Gain Match	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=1 \mathrm{k} \Omega$,					
	$\mathrm{T}_{\text {MIN }}-\mathrm{T}_{\text {MAX }}$	$\pm 15 \mathrm{~V}$	0.15	0.01		mV / V
Common-Mode Rejection Ratio Match	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}}-\mathrm{T}_{\mathrm{MAX}}$	$\pm 15 \mathrm{~V}$	80	100		dB
Power Supply Rejection Ratio Match	$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{MIN}}-\mathrm{T}_{\mathrm{MAX}}$		80	100		dB
POWER SUPPLY						
Operating Range	Dual Supply		± 2.5		± 18	V
	Single Supply		+5		+36	V
Quiescent Current/Amplifier		$\pm 5 \mathrm{~V}$		6.6	7.5	mA
	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\pm 5 \mathrm{~V}$			7.5	mA
		$\pm 15 \mathrm{~V}$			7.5	mA
	$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	$\pm 15 \mathrm{~V}$		6.8	7.5	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, \mathrm{~T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$		75	86		dB

NOTES
${ }^{1}$ Full power bandwidth $=$ slew rate $/ 2 \pi \mathrm{~V}_{\text {Peak }}$.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage . ± 18 V Internal Power Dissipation ${ }^{2}$

Plastic (N) . See Derating Curves
Small Outline (R) See Derating Curves
Input Voltage (Common Mode) $\pm \mathrm{V}_{\mathrm{S}}$
Differential Input Voltage . $\pm 6 \mathrm{~V}$
Output Short Circuit Duration See Derating Curves
Storage Temperature Range (N, R) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature Range (Soldering 10 seconds) ... $+300^{\circ} \mathrm{C}$ NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability .
${ }^{2}$ Specification is for device in free air: 8-lead plastic package, $\theta_{\mathrm{JA}}=100^{\circ} \mathrm{C} /$ watt; 8 -lead SOIC package, $\theta_{\mathrm{JA}}=155^{\circ} \mathrm{C} /$ watt.

ORDERING GUIDE

	Temperature Range	Package Description	Package Option
AD826AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Plastic DIP	$\mathrm{N}-8$
AD826AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead Plastic SOIC	SO-8
AD826AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$7 "$ Tape \& Reel SOIC	SO-8
AD826AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13" Tape \& Reel SOIC	SO-8

ESD SUSCEPTIBILITY

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 volts, which readily accumulate on the human body and on test equipment, can discharge without detection. Although the AD826 features proprietary ESD protection circuitry, permanent damage may still occur on these devices if they are subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid any performance degradation or loss of functionality.

[^1]
OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

8-Lead Plastic Mini-DIP (N) Package

8-Lead SO (R) Package

All brand or product names mentioned are trademarks or registered trademarks of their respective holders.

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or

[^1]: Maximum Power Dissipation vs. Temperature for Different Package Types

